jupyterlab and pyspark2 integration in 1 minute

As we use CDH 5.14.0 on our hadoop cluster, the highest spark version to be support is 2.1.3, so this blog is to record the procedure of how I install pyspark-2.1.3 and integrate it with jupyter-lab.

Evironment:
spark 2.1.3
CDH 5.14.0 – hive 1.1.0
Anaconda3 – python 3.6.8

  1. Add export to spark-env.sh
    export PYSPARK_PYTHON=/opt/anaconda3/bin/python
    export PYSPARK_DRIVER_PYTHON=/opt/anaconda3/bin/jupyter-lab
    export PYSPARK_DRIVER_PYTHON_OPTS='  --ip=172.16.191.30 --port=8890'
  2. install sparkmagic
    pip install sparkmagic
  3. Use conda or pip command to downgrade ipykernel to 4.9.0, cause ipykernel 5.x doesn’t support sparkmagic, it will throw a Future exception.
    https://github.com/jupyter-incubator/sparkmagic/issues/492
  4. /opt/spark-2.1.3/bin/pyspark –master yarn

If you need to run with backgrand , use nohup.

Another problem, in pyspark, sqlContext cannot access remote hivemetastore and without any exceptions, when i run show databases in pyspark, it always return me default. And then i found out, in spark2’s jars dir, there was a hive-exec-1.1.0-cdh5.14.0.jar, delete this jar file, everythings ok.

Using py-SparkSQL2 in Zeppelin to query hdfs encryption data

%spark2_1.pyspark
from pyspark.sql import SQLContext
from pyspark.sql import HiveContext, Row
from pyspark.sql.types import *
import pandas as pd
import pyspark.sql.functions as F

trial_pps_order = spark.read.parquet('/tmp/exia/trial_pps_select')
pps_order = spark.read.parquet('/tmp/exia/orders_pps_wc_member')
member_info = spark.read.parquet('/tmp/exia/member_info')


# newHiveContext=HiveContext(sc)

query_T="""  

select  * from crm.masterdata_hummingbird_product_mst_banner_v1 
where brand_name = 'pampers'

"""
product_mst=spark.sql(query_T)

product_mst.show()

%spark2_1.pyspark: custom interpreter in Zeppelin 0.7.2
crm.masterdata_hummingbird_product_mst_banner_v1: hive table, data stored in hdfs encrypt zone.

The code throws exception below:

Traceback (most recent call last):
  File "/tmp/zeppelin_pyspark-7483288776781667654.py", line 367, in <module>
    raise Exception(traceback.format_exc())
Exception: Traceback (most recent call last):
  File "/tmp/zeppelin_pyspark-7483288776781667654.py", line 360, in <module>
    exec(code, _zcUserQueryNameSpace)
  File "<stdin>", line 14, in <module>
  File "/usr/lib/spark-2.1.3-bin-hadoop2.6/python/pyspark/sql/dataframe.py", line 318, in show
    print(self._jdf.showString(n, 20))
  File "/usr/lib/spark-2.1.3-bin-hadoop2.6/python/lib/py4j-0.10.7-src.zip/py4j/java_gateway.py", line 1257, in __call__
    answer, self.gateway_client, self.target_id, self.name)
  File "/usr/lib/spark-2.1.3-bin-hadoop2.6/python/pyspark/sql/utils.py", line 63, in deco
    return f(*a, **kw)
  File "/usr/lib/spark-2.1.3-bin-hadoop2.6/python/lib/py4j-0.10.7-src.zip/py4j/protocol.py", line 328, in get_return_value
    format(target_id, ".", name), value)
Py4JJavaError: An error occurred while calling o76.showString.
: org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 3.0 failed 4 times, most recent failure: Lost task 0.3 in stage 3.0 (TID 6, pg-dmp-slave28.hadoop, executor 1): java.io.IOException: No KeyProvider is configured, cannot access an encrypted file
	at org.apache.hadoop.hdfs.DFSClient.decryptEncryptedDataEncryptionKey(DFSClient.java:1338)
	at org.apache.hadoop.hdfs.DFSClient.createWrappedInputStream(DFSClient.java:1414)
	at org.apache.hadoop.hdfs.DistributedFileSystem$3.doCall(DistributedFileSystem.java:304)
	at org.apache.hadoop.hdfs.DistributedFileSystem$3.doCall(DistributedFileSystem.java:298)
	at org.apache.hadoop.fs.FileSystemLinkResolver.resolve(FileSystemLinkResolver.java:81)
	at org.apache.hadoop.hdfs.DistributedFileSystem.open(DistributedFileSystem.java:298)
	at org.apache.hadoop.fs.FileSystem.open(FileSystem.java:766)
	at org.apache.hadoop.mapred.LineRecordReader.<init>(LineRecordReader.java:109)
	at org.apache.hadoop.mapred.TextInputFormat.getRecordReader(TextInputFormat.java:67)
	at org.apache.spark.rdd.HadoopRDD$$anon$1.liftedTree1$1(HadoopRDD.scala:257)
	at org.apache.spark.rdd.HadoopRDD$$anon$1.<init>(HadoopRDD.scala:256)
	at org.apache.spark.rdd.HadoopRDD.compute(HadoopRDD.scala:216)
	at org.apache.spark.rdd.HadoopRDD.compute(HadoopRDD.scala:102)
	at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
	at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
	at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
	at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
	at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
	at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
	at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
	at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
	at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
	at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
	at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
	at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
	at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
	at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
	at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
	at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
	at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
	at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
	at org.apache.spark.scheduler.Task.run(Task.scala:100)
	at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:325)
	at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
	at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
	at java.lang.Thread.run(Thread.java:748)
Driver stacktrace:
	at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1455)
	at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1443)
	at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1442)
	at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
	at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
	at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1442)
	at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:802)
	at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:802)
	at scala.Option.foreach(Option.scala:257)
	at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:802)
	at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1670)
	at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1625)
	at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1614)
	at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
	at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:628)
	at org.apache.spark.SparkContext.runJob(SparkContext.scala:1928)
	at org.apache.spark.SparkContext.runJob(SparkContext.scala:1941)
	at org.apache.spark.SparkContext.runJob(SparkContext.scala:1954)
	at org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:333)
	at org.apache.spark.sql.execution.CollectLimitExec.executeCollect(limit.scala:38)
	at org.apache.spark.sql.Dataset$$anonfun$org$apache$spark$sql$Dataset$$execute$1$1.apply(Dataset.scala:2390)
	at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:57)
	at org.apache.spark.sql.Dataset.withNewExecutionId(Dataset.scala:2792)
	at org.apache.spark.sql.Dataset.org$apache$spark$sql$Dataset$$execute$1(Dataset.scala:2389)
	at org.apache.spark.sql.Dataset.org$apache$spark$sql$Dataset$$collect(Dataset.scala:2396)
	at org.apache.spark.sql.Dataset$$anonfun$head$1.apply(Dataset.scala:2132)
	at org.apache.spark.sql.Dataset$$anonfun$head$1.apply(Dataset.scala:2131)
	at org.apache.spark.sql.Dataset.withTypedCallback(Dataset.scala:2822)
	at org.apache.spark.sql.Dataset.head(Dataset.scala:2131)
	at org.apache.spark.sql.Dataset.take(Dataset.scala:2346)
	at org.apache.spark.sql.Dataset.showString(Dataset.scala:248)
	at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
	at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
	at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
	at java.lang.reflect.Method.invoke(Method.java:498)
	at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
	at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
	at py4j.Gateway.invoke(Gateway.java:282)
	at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
	at py4j.commands.CallCommand.execute(CallCommand.java:79)
	at py4j.GatewayConnection.run(GatewayConnection.java:238)
	at java.lang.Thread.run(Thread.java:748)
Caused by: java.io.IOException: No KeyProvider is configured, cannot access an encrypted file
	at org.apache.hadoop.hdfs.DFSClient.decryptEncryptedDataEncryptionKey(DFSClient.java:1338)
	at org.apache.hadoop.hdfs.DFSClient.createWrappedInputStream(DFSClient.java:1414)
	at org.apache.hadoop.hdfs.DistributedFileSystem$3.doCall(DistributedFileSystem.java:304)
	at org.apache.hadoop.hdfs.DistributedFileSystem$3.doCall(DistributedFileSystem.java:298)
	at org.apache.hadoop.fs.FileSystemLinkResolver.resolve(FileSystemLinkResolver.java:81)
	at org.apache.hadoop.hdfs.DistributedFileSystem.open(DistributedFileSystem.java:298)
	at org.apache.hadoop.fs.FileSystem.open(FileSystem.java:766)
	at org.apache.hadoop.mapred.LineRecordReader.<init>(LineRecordReader.java:109)
	at org.apache.hadoop.mapred.TextInputFormat.getRecordReader(TextInputFormat.java:67)
	at org.apache.spark.rdd.HadoopRDD$$anon$1.liftedTree1$1(HadoopRDD.scala:257)
	at org.apache.spark.rdd.HadoopRDD$$anon$1.<init>(HadoopRDD.scala:256)
	at org.apache.spark.rdd.HadoopRDD.compute(HadoopRDD.scala:216)
	at org.apache.spark.rdd.HadoopRDD.compute(HadoopRDD.scala:102)
	at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
	at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
	at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
	at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
	at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
	at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
	at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
	at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
	at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
	at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
	at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
	at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
	at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
	at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
	at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
	at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
	at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
	at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
	at org.apache.spark.scheduler.Task.run(Task.scala:100)
	at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:325)
	at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
	at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
	... 1 more

So, Spark will use hive-site.xml to connect hiveserver2 in its conf directory. such as /usr/lib/spark-2.1.0-bin-hadoop2.6/conf, and the hive-site.xml will transmit to hive.

Solution:

add encrypt to hive-site.xml

  <property>
    <name>hadoop.security.key.provider.path</name>
    <value>kms://http@dmp-master2.hadoop:16000/kms</value>
  </property>
  <property>
    <name>dfs.encrypt.data.transfer.algorithm</name>
    <value>3des</value>
  </property>
  <property>
    <name>dfs.encrypt.data.transfer.cipher.suites</name>
    <value>AES/CTR/NoPadding</value>
  </property>
  <property>
    <name>dfs.encrypt.data.transfer.cipher.key.bitlength</name>
    <value>256</value>
  </property>
  <property>
    <name>dfs.encryption.key.provider.uri</name>
    <value>kms://http@dmp-master2.hadoop:16000/kms</value>
  </property>

 

Spark read LZO file error in Zeppelin

Due to our dear stingy Party A  said they will add not any nodes to the cluster, so we must compress the data to reduce disk consumption. Actually  I like LZ4, it’s natively supported by hadoop, and the compress/decompress speed is good enough,  compress ratio is better than LZO. But, I must choose LZO finally, no reason.

Well, since we use Cloudera Manager to  install Hadoop and Spark, so it’s no error when read lzo file in command line, simply use as text file, Ex:

val data = sc.textFile("/user/dmp/miaozhen/ott/MZN_OTT_20170101131042_0000_ott.lzo")
data.take(3)

But in zeppelin, it will told me: native-lzo library not available, WTF?

Well, Zeppelin is a self-run environment, it will read its configuration only, do not read any other configs, Ex: it will not try to read /etc/spark/conf/spark-defaults.conf . So I must wrote all spark config such as you wrote them in spark-deafults.conf.

In our cluster, the Zeppelin conf looks like this:

Troubleshooting on Zeppelin with keberized cluster

We’ve updated Zeppelin from 0.7.0 to 0.7.1, still work with kerberized hadoop cluster, we use some interpreters in zeppelin, not all. And I wanna write some troubleshooting records with this awesome webtool. BTW: I can write a webtool better than this 1000 times, such as phpHiveAdmin, basically I can see the map/reduce prograss bar Continue reading Troubleshooting on Zeppelin with keberized cluster

Use kerberized Hive in Zeppelin

We deployed Apache Zeppelin 0.7.0 for the Kerberos secured Hadoop cluster, and my dear colleague cannot use it correctly, so I have to find out why he can’t use anything in Zeppelin, except shell command.

I start with Kerberized Hive Continue reading Use kerberized Hive in Zeppelin

Troubleshooting kerberized hive issues

Today, my colleagues want to use hive in zeppelin, it’s the first time to use hive in this new kerberized cluster, and unfortunately there was an authenticate issue of using hive. So I have to debug on it.

The hive client was installed hadoop-client and hive and put all the needed keytabs in config dirs and set the right permission of their all, but still could not connect to the cluster. The log always shows authentication failed. Continue reading Troubleshooting kerberized hive issues